

Fig. 1. The anion in $\left(\mathrm{NH}_{4}\right)_{4}\left[\mathrm{H}_{6} \mathrm{CuMo}_{6} \mathrm{O}_{24}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}$. Thermal ellipsoids are scaled to enclose 30% probability.
(max. 1.23 and min. 0.87). Positions of Cu and Mo atoms from Patterson map, N and O atoms from Fourier syntheses; full-matrix least-squares refinement on $F ; \mathrm{H}$ atoms not located; all atoms anisotropic, final R $=0.060, w R=0.075$ and $S=1.40$ for 1734 observed reflections $[|F|>3 \sigma(F) \mid, \quad 187$ parameters, $\quad w=1 /$ $\sigma^{2}(F), \quad(\Delta / \sigma)_{\max }=0.03, \quad$ maximum $\quad \Delta \rho=1.41 \mathrm{e} \AA^{-3}$ possibly at site fractionally occupied by disordered $\mathrm{H}_{2} \mathrm{O}$. All calculations using TEXSAN (Swepston, 1986) with scattering factors from International Tables for X-ray Crystallography (1974). Atomic parameters
are listed in Table 1* and interatomic distances are given in Table 2. Fig. 1 shows an ORTEP (Johnson, 1976) drawing of the structure.

Related literature. In $\left[\mathrm{H}_{6} \mathrm{CrMo}_{6} \mathrm{O}_{24}\right]^{3-} \mathrm{Cr}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{O}$ are in the ranges 1.97-1.99 and 1.70-2.35 \AA, respectively (Perloff, 1970). In $\left[\mathrm{TeMo}_{6} \mathrm{O}_{24}\right]^{6-} \mathrm{Te}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{O}$ are in the ranges $1.93-1.94$ and 1.69 $2.32 \AA$, respectively (Evans, 1974). In $\left[\mathrm{IMO}_{6} \mathrm{O}_{24}\right]^{7-}$ $\mathrm{I}-\mathrm{O}$ and $\mathrm{Mo}-\mathrm{O}$ are in the ranges $1.88-1.89$ and 1.70-2.37 \AA, respectively (Kondo, Kobayashi \& Sasaki, 1980).

[^0]
Structure of the Bis[bis(diphenylphosphino)methane]digold(I) Cation in $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$

By Leigh Christopher Porter, Md. Nazrul I. Khan, Christopher King and John P. Fackler Jr*

Laboratory for Molecular Structure and Bonding, Texas A\&M University, College Station, TX 77843, USA
(Received 9 September 1988; accepted 14 November 1988)

Abstract

Bis- μ - $\left\{\right.$ bis(diphenylphosphino)methane- $P, P^{\prime} \mid-$ digold(I) bis(tetrafluoroborate), $\quad\left|\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right|-$ $\left(\mathrm{BF}_{4}\right)_{2}, \quad\left|\mathrm{Au}_{2}\left\{\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{PCH}_{2} \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right\}_{2}\right|\left(\mathrm{BF}_{4}\right)_{2}, \quad M_{r}=$ 1336.4, monoclinic, $\quad P 2_{1} / a, \quad a=15.047$ (5), $\quad b=$ 17.462 (3), $\quad c=10.532$ (2) $\AA, \quad \beta=117.59$ (2) ${ }^{\circ}, \quad V=$ $2452(1) \AA^{3}, Z=2, D_{x}=1.810 \mathrm{~g} \mathrm{~cm}^{3}, \lambda(\operatorname{Mo} K \alpha)=$ $0.71073 \AA, \quad \mu=61.56 \mathrm{~cm}^{1}, \quad F(000)=1288, \quad T=$ 298 K. Final $R=0.040$ for 2587 unique observed

^[* To whom correspondence should be addressed.]

0108-2701/89/060947-03\$03.00
reflections. This is the first structure of an $\mathrm{Au}_{2}{ }^{-}$ (dppm) ${ }_{2}^{2+}$ cation in which the anion is not coordinated to an Au atom. The $\mathrm{Au} \cdots \mathrm{Au}$ separation is 2.931 (1) \AA.

Experimental. Addition of AgBF_{4} to $\left|\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right| \mathrm{Cl}_{2}$ in tetrahydrofuran gave a precipitate which, on dissolving in $\mathrm{CH}_{3} \mathrm{CN}$ and removing the solvent, gave $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ in 93% yield. Analysis: C 45.29 (calculated 44.94), H 3.47 (3.32\%). M.p. 493 K with decomposition. A colorless crystal, obtained by re(c) 1989 International Union of Crystallography
crystallization from $\mathrm{CH}_{3} \mathrm{CN} /$ diethyl ether, $0.17 \times$ $0.16 \times 0.24 \mathrm{~mm}$, was mounted in a random orientation on a glass fiber. Axial dimensions and monoclinic symmetry were verified by axial rotation photographs. Refined cell parameters were obtained from the setting angles of 25 reflections with $30<2 \theta<35^{\circ}$. Data were collected on a Nicolet $R 3 m / E$ diffractometer with graphite-monochromated Mo $K \alpha$ radiation using the ω-scanning technique in bisecting geometry. 3471 reflections ($+h \leq 17,+k \leq 19,|l| \leq 12$) measured with $0<2 \theta<45^{\circ}$. Scan rate variable, $2-30^{\circ} \mathrm{min}{ }^{\prime}$; scan range -0.8° in ω from $K \alpha_{1}$ to $+0.8^{\circ}$ from $K \alpha_{2}$. Background intensities estimated from a 96 -step peak profile. Three standard reflections ($11 \overline{1}, 0 \overline{2} 0, \overline{1} \overline{1} 0)$ measured every 100 data. The data were corrected for standard variation ($<1 \%$) and Lorentz and polarization effects. Absorption corrections were applied using a Gaussian quadrature method following careful measurement of crystal dimensions and assignment of indices to the crystal faces (minimum and maximum transmission factors of 0.203 and 0.441). Structure determination used SHELXTL (Sheldrick, 1978). Scattering factors, including terms for anomalous dispersion, taken from International Tables for X-ray Crystallography (1974). Au-atom positions determined from a sharpened Patterson map; remaining non-H atoms located using difference Fourier techniques. All non-H atoms refined anisotropically, except for the F atoms. Phenyl rings refined as rigid hexagons ($\mathrm{C}-\mathrm{C}$ $=1.39 \AA ; \mathrm{C}-\mathrm{C}-\mathrm{C}=120^{\circ}$); H atoms were placed in idealized positions with fixed thermal parameters $\left[U(\mathrm{H})=0.08 \AA^{2}\right]$ Least-squares refinement based on minimization of $\sum w\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2}$ with weights of the form $w^{-1}=\left[\sigma^{2}\left(F_{o}\right)+0.002033\left(F_{o}{ }^{2}\right)\right]$. Convergence to conventional R values of $R=0.040$ and $w R=0.045$ obtained using 243 parameters and 2587 unique reflections with $F^{2}>3 \sigma\left(F^{2}\right)$. For final cycle maximum shift/ $\sigma=0.043$. The BF_{4} ion is

Fig. 1. View of $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$. Thermal ellipsoids drawn at the 50% probability level. Only the ipso C atoms of the phenyl rings are shown. H atoms are omitted. Only one orientation of the disordered BF_{4}^{-}is shown.

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and isntropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\left[\mathrm{Au}_{2}(d p p m)_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$

	x	y	z	$U_{\text {iso }}$
$\mathrm{Au}(1)$	367 (1)	78 (1)	1548 (1)	32 (1)*
$\mathrm{P}(1)$	-916(2)	-697(1)	1423 (2)	31 (1)*
$\mathrm{P}(2)$	1675 (2)	860 (1)	1788 (2)	33 (1)*
F(1)	-544 (6)	2913 (5)	-564 (9)	108 (3)
F(2)	-2076 (10)	2478 (7)	-1190(15)	85 (4)
F(3)	-677 (10)	1712 (8)	74 (14)	113 (5)
F(4)	-1048 (11)	2671 (9)	1027 (15)	125 (6)
F(2a)	-1877 (21)	2569 (16)	-232 (30)	137 (10)
F(3a)	-1071 (13)	1742 (10)	-1061 (19)	78 (6)
F(4a)	-469 (14)	1961 (11)	1038 (21)	91 (7)
B(1)	-1064 (11)	2403 (7)	-229 (19)	79 (9)*
C(1)	1369 (6)	1352 (5)	90 (8)	32 (4)*
C(11)	-2773 (4)	-528 (3)	1363 (7)	47 (5)*
C(12)	-3605 (4)	-108 (3)	1214 (7)	60 (6)*
C(13)	-3641 (4)	681 (3)	989 (7)	74 (6)*
C(14)	-2845 (4)	1051 (3)	912 (7)	74 (7)*
C(15)	-2014 (4)	631 (3)	1061 (7)	60 (6)*
C(16)	-1977 (4)	-158 (3)	1286 (7)	37 (4)*
C(21)	1706 (5)	2351 (3)	2822 (5)	52 (5)*
C(22)	1917 (5)	2880 (3)	3917 (5)	72 (7)*
C(23)	2406 (5)	2644 (3)	5344 (5)	76 (7)*
C(24)	2684 (5)	1879 (3)	5676 (5)	67 (6)*
C(25)	2473 (5)	1350 (3)	4581 (5)	57 (5)*
C(26)	1984 (5)	1586 (3)	3153 (5)	35 (4)*
C(31)	-168 (5)	-2020 (3)	3138 (6)	58 (6)*
C(32)	203 (5)	-2409 (3)	4441 (6)	61 (6)*
C(33)	223 (5)	-2048 (3)	5636 (6)	63 (6)*
C(34)	-127 (5)	-1299 (3)	5528 (6)	72 (7)*
C(35)	-498(5)	-911 (3)	4225 (6)	65 (6)*
C(36)	-518(5)	-1271 (3)	3030 (6)	32 (4)*
C(41)	3697 (5)	739 (3)	2520 (8)	65 (6)*
C(42)	4586 (5)	335 (3)	2914 (8)	75 (6)*
C(43)	4614 (5)	-455 (3)	3128 (8)	88 (8)**
C(44)	3752 (5)	-841 (3)	2950 (8)	95 (9)**
C(45)	2862 (5)	-437(3)	2556 (8)	73 (6)*
C(46)	2835 (5)	352 (3)	2342 (8)	45 (4)*

*The equivalent isotropic U is defined as $\frac{1}{3}$ of the trace of the $U_{i j}$ tensor.
disordered. A second orientation is obtained from the first by a C_{6} rotation about the $B(1)-F(1)$ axis. Occupancies refined to $60(1) \%$ for one orientation $[F(2), F(3), F(4)]$ and $40(1) \%$ for the other $[F(2 a)$, $\mathrm{F}(3 a), \mathrm{F}(4 a)]$. Maximum residual electron density of $+0.96 \mathrm{e} \AA^{-3}$ is $0.90 \AA$ from $F(4)$, indicating that the disorder model is imperfect. Slope of normal probability plot equals 0.925 with a goodness-of-fit indicator of 1.032. The compound, shown in Fig. 1, has a crystallographic center of symmetry. Atomic coordinates and equivalent isotropic thermal parameters are listed in Table 1; bond angles and distances are listed in Table 2. Fig. 2 shows the crystal packing.*

Related literature. The structures of $\left|\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right| \mathrm{Cl}_{2}$ (Schmidbaur, Wohlleben, Wagner, Orama \& Huttner, 1977), and $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right] \mathrm{Br}_{2}$ and $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2} \mid \mathrm{I}_{2}\right.$ (Shain \& Fackler, 1987) have been reported. The preparation of $\left[\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$ has been described (Schmidbaur et al., 1977).

[^2]Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left|\mathrm{Au}_{2}(d p p m)_{2}\right|\left(\mathrm{BF}_{4}\right)_{2}$

Au(1)-P(1)	2.311 (3)	$\mathrm{Au}(1)-\mathrm{P}(2)$	$2 \cdot 310$ (3)
$\left.\mathrm{Au}(1)-\mathrm{Au}(1)^{\prime}\right)$	2.931 (1)	$\mathrm{P}(1)-\mathrm{C}(16)$	1.801 (7)
$P(1)-C(36)$	1.814 (6)	$\mathrm{P}(1)-\mathrm{C}(1)^{\prime}$	1.819 (8)
$\mathrm{P}(2)-\mathrm{C}(1)$	1.839 (8)	$\mathrm{P}(2)-\mathrm{C}(26)$	1.810 (6)
$\mathrm{P}(2)-\mathrm{C}(46)$	1.797 (7)	$F(1)-B(1)$	1.336 (20)
$F(2)-\mathrm{B}(1)$	1.391 (17)	$F(3)-B(1)$	1.313(19)
$F(4) \cdot B(1)$	1.393 (27)	$\mathrm{F}(2 a)-\mathrm{B}(1)$	1.256(39)
$F(3 a)-\mathrm{B}(1)$	1.446 (25)	$\mathrm{F}(4 a)-\mathrm{B}(1)$	1.439 (23)
$P(1)-A u(1)-P(2)$	177.3(1)	$\mathrm{P}(1)-\mathrm{Au}(1)-\mathrm{Au}\left(1^{\prime}\right)$	90.4 (1)
$\mathrm{P}(2) \cdot \mathrm{Au}(1)-\mathrm{Au}\left(1^{\prime}\right)$	$92 \cdot 3$ (1)	$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}(16)$	112.7 (2)
$\mathrm{Au}(1) \cdots \mathrm{P}(1)-\mathrm{C}(36)$	111.4 (2)	$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}(36)$	105.1 (4)
$\mathrm{Au}(1)-\mathrm{P}(1)-\mathrm{C}\left(1^{\prime}\right)$	112.5 (4)	C(16)-P(1)-C(1')	107.4 (3)
$\mathrm{C}(36)-\mathrm{P}(1)-\mathrm{C}\left(\mathrm{I}^{\prime}\right)$	107.3 (3)	$\mathrm{Au}(1)-\mathrm{P}(2)-\mathrm{C}(1)$	110.6 (3)
$\mathrm{Au}(1)-\mathrm{P}(2)-\mathrm{C}(26)$	$113 \cdot 2$ (3)	$C(1)-P(2)-C(26)$	107.6 (3)
$\mathrm{Au}(1)-\mathrm{P}(2)-\mathrm{C}(46)$	113.2 (2)	$\mathrm{C}(1)-\mathrm{P}(2)-\mathrm{C}(46)$	108.3 (5)
$\mathrm{C}(26) \quad \mathrm{P}(2)-\mathrm{C}(46)$	103.5 (3)	$F(1)-B(1)-F(2)$	108.8 (13)
$F(1)-B(1)-F(3)$	115.4 (16)	$F(2)-B(1)-F(3)$	118.5 (12)
$F(1)-B(1)-F(4)$	105.8 (12)	$F(2)-B(1)-F(4)$	101.0(15)
$F(3)-B(1)-F(4)$	$105 \cdot 5$ (15)	$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(2 a)$	122.3(17)
$F(2) \cdot \mathrm{B}(1)-\mathrm{F}(2 a)$	$40 \cdot 5$ (15)	$\mathrm{F}(3)-\mathrm{B}(1)-\mathrm{F}(2 a)$	$122 \cdot 3$ (20)
$F(4)-B(1)-F(2 a)$	60.8 (17)	$F(1)-\mathrm{B}(1)-\mathrm{F}(3 a)$	102.3(17)
$\mathrm{F}(2)-\mathrm{B}(1)-\mathrm{F}(3 a)$	86.3 (11)	$\mathrm{F}(3)-\mathrm{B}(1)-\mathrm{F}(3 a)$	44.9 (10)
$\mathrm{F}(4)-\mathrm{B}(1)-\mathrm{F}(3 a)$	146.7 (16)	$\mathrm{F}(2 a)-\mathrm{B}(1)-\mathrm{F}(3 a)$	$116.7(17)$
$\mathrm{F}(1)-\mathrm{B}(1)-\mathrm{F}(4 a)$	114.4 (13)	$\mathrm{F}(2)-\mathrm{B}(1)-\mathrm{F}(4 a)$	136.6 (18)
$\mathrm{F}(3)-\mathrm{B}(1)-\mathrm{F}(4 a)$	42.8 (11)	$\mathrm{F}(4)-\mathrm{B}(1)-\mathrm{F}(4 a)$	64.5 (14)
$\mathrm{F}(2 a)-\mathrm{B}(1) \cdot \mathrm{F}(4 a)$	108.2 (23)	$\mathrm{F}(3 a)-\mathrm{B}(1)-\mathrm{F}(4 a)$	87.8 (13)
$\mathrm{P}(2) \cdot \mathrm{C}(1) \cdot \mathrm{P}\left(1^{\prime}\right)$	112.4 (4)	$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(11)$	120.5 (2)
$\mathrm{P}(1) \mathrm{C}(16)-\mathrm{C}(15)$	119.5 (2)	$\mathrm{P}(2)-\mathrm{C}$ (26)-C(21)	122.4(2)
$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(25)$	117.6 (2)	$\mathrm{P}(1)-\mathrm{C}(36)-\mathrm{C}(31)$	122.9 (2)
$\mathrm{P}(1)-\mathrm{C}(36)-\mathrm{C}(35)$	116.9 (2)	$\mathrm{P}(2)-\mathrm{C}(46)-\mathrm{C}(41)$	120.5 (2)
$\mathrm{P}(2)-\mathrm{C}(46)-\mathrm{C}(45)$	119.5 (2)		

These studies were supported by the Welch Foundation, the National Science Foundation NSF-8708625, and by the Regents of Texas A\&M University through the AUF-sponsored Materials Science and Engineering Program.

Fig. 2. Packing diagram of $\left|\mathrm{Au}_{2}(\mathrm{dppm})_{2}\right|\left(\mathrm{BF}_{4}\right)_{2}$. The shortest $\mathrm{BF}_{4}^{-} \ldots \mathrm{Au}$ separation, $3.28 \AA, \mathrm{Au}(1) \cdots \mathrm{F}(3)$, is indicated by the dashed line. Only one orientation of the disordered BF_{4}^{-}is shown.

References

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Schmidbaur, H., Wohlleben, A., Wagner, R., Orama, O. \& Huttner, G. (1977). Chem. Ber. 110, 1748-1754.
Shain, J. \& Fackler, J. P. Jr (1987). Inorg. Chim. Acta, 131, 157-158.
Sheldrick, G. M. (1978). SHELXTL, version 5.1. An Integrated System for Solving, Refining and Displaying Crystal Structures from Diffraction Data. Univ. of Göttingen, Federal Republic of Germany.

Acta Cryst. (1989). C45, 949-951

Absolute Structure of Di- μ-sulfoacetato-bis $\{[(1 R, 2 R)$-1,2-diaminocyclohexane $]$ platinum(II) $\}$ Trihydrate

By Kojiro Okude, Hikaru Ichida, T. Ken Miyamoto and Yukiyoshi Sasaki
Department of Chemistry, Faculty of Science, The University of Tokyo, Tokyo 113, Japan

(Received 24 October 1988; accepted 30 November 1988)

Abstract

Pt}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{5} \mathrm{~S}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2}\right)_{2} \mathrm{l} \cdot 3 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\right.\) 948.80, orthorhombic, $P 2,2,2_{1}, a=19.186(4), b=$ $14.577(2), c=9.876$ (1) $\AA, V=2762$ (1) $\AA^{3}, Z=4$, $D_{x}=2.28, \quad D_{m}=2.25 \mathrm{Mg} \mathrm{m}^{3}, \quad \lambda($ Mo $K \alpha)=$ $0.71069 \AA, \mu=10.859 \mathrm{~mm}{ }^{1}, \quad F(000)=1816, \quad T=$ $298 \mathrm{~K}, R=0.033, w R=0.031$ for 2455 independent reflections. Formal local charges on Pt atoms and SO_{3} groups are not compensated and the molecule has a divalent zwitterionic character. The geometric requirement imposed by the bridging carboxyl group causes the relatively short $\mathrm{Pt}-\mathrm{Pt}$ distance $\mid 3.0435$ (8) $\AA \mid$ but it

is slightly too long to be regarded as a metal-metal bond. Coordination planes around Pt are not parallel because of the steric repulsion between the cyclohexane rings (dihedral angle between the coordination planes is $42 \cdot 9^{\circ}$).

Experimental. The title compound was synthesized from a reaction of dihydroxol $(1 R, 2 R)$-1,2-diaminocyclohexanelplatinum(II) and sulfoacetic acid and was recrystallized from $\mathrm{H}_{2} \mathrm{O}$. Yellow prism crystals; $0.23 \times$ $0.15 \times 0.10 \mathrm{~mm} ; D_{m}$ by flotation in $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}-\mathrm{CH}_{2} \mathrm{I}_{2}$. © 1989 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51676 (14 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

 ## References

 Evans, H. T. Jr (1974). Acta Cryst. B30, 2095-2100.
 International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
 Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
 Kondo, H., Kobayashi, A. \& Sasaki, Y. (1980). Acta Cryst. B36, 661-664.
 Perloff, A. (1970). Inorg. Chem. 9, 2228-2239.
 Rosenheim, A. (1916). Z. Anorg. Chem. 96, 139-181.
 Swepston, P. N. (1986). TEXSAN Software. Molecular Structure Corporation, College Station, Texas, USA.

[^2]: * Lists of structure factors, H -atom coordinates and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51608 (24 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

